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Abstract. The recent interest in delta-operator (or, 6-operator) formulated discrete-time systems (or,

6-systems) is due mainly to (a) their superior finite wordlength characteristics as compared to their more
conventional shift-operator (or, q-operator) counterparts (or, q-systems), and (b) the possibility of a more
unified treatment of both continuous- and discrete-time systems. With such advantages, design, analysis,

and implementation of two-dimensional (2-D) discrete-time systems using the 6-operator is indeed war-

ranted. Towards this end, the work in this paper addresses the development of an easily implementable
direct algorithm for stability checking of 2-D 6-system transfer function models. Indirect methods that

utilize transformation techniques are not pursued since they can be numerically unreliable. In develop-
ing such an algorithm, a tabular form for stability checking of 6-system characteristic polynomials with
complex-valued coefficients and certain quantities that may be regarded as their corresponding Schur-Cohn
minors are also proposed.
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1. Introduction

The increased interest in 6-systems during the recent years (see [1-6], and references

therein) is due mainly to two reasons: (a) 6-systems provide superior finite wordlength

properties with respect to roundoff noise propagation [5] and coefficient sensitivity [1], [5],

[7], as compared to their q-system counterparts, and (b) the 6-operator yields the differ-

ential operator as a limiting case when sampling time approaches zero enabling a unified

treatment of both continuous- and discrete-time systems [1].

With such advantages in mind, development of 2-D and multi-dimensional (m-D) 6-

system models must dearly be undertaken. Such research can, for example, provide m-D

digital filters with superior roundoff error and coefficient sensitivity performance allowing

their implementation to be carried out in a shorter wordlength environment. This is

especially crucial in real-time applications, such as, in implementing narrow bandwidth

filters under high sampling rates (for example, in current wide bandwidth communication

system applications) where traditional q-operator implementations perform poorly [8].

In applications mentioned above, and those dealing with high-speed processing of 2-D

and m-D data (for instance, in weather, seismic, gravitational photographs, video images,

systems with mutliple sampling rates, etc.), ensuring stability is an important consideration

(see [91, and references therein). Given the characteristic polynomial of a 6 -system, to

determine stability, one may first use a variable transformation that yields a more familiar

stability region, for instance, the unit bi-circle. Then, an existing technique (see [9-10],

and references therein) may be applied. However, such techniques are known to be prone

to numerically ill-conditioning [1], [6]. In the 1-D case, direct stability checking methods

for b-system polynomials are in [6] (where a tabular method based on the work in [11]

is given) and [12J (where a Hermite-Bieler-like Theorem is utilized). Hence, our purpose

here is to develop a direct easily implementable stability checking technique applicable

to m-D 6-systems. As usual, for notational simplicity, we concentrate on the 2-D case, the

extension to the m-D case being quite straight-forward.

In checking stability of bivariate charactcristic polynomials, two conditions must be



Stability Determination of Two-Dimensional S-Systems

satisfied.

(a) Condition I involves a 1-D stability check of a polynomial with real-valued coefficients.

One may use the table form in [6]. Alternately, one may utilize an explicit root location

scheme.

(b) Condition II involves a stability check of a polynomial with complex-valued coefficients

where the latter are dependent on a parameter taking values on a certain circle in the

complex plane. Explicit root location schemes are now ineffective, and the value of tabular

methods becomes apparent. Note that, in such a situation, compared to Nyquist-like

techniques [131, tabular methods are known to provide certain numerical advantages as

well [14].

In checking condition II for 2-D q-systems, an effective technique involves checking

positive definiteness of the Hermitian Schur-Cohn matrix [15]. This lets one use an impor-

tant simplification due to Siljak [16]. The tabular form in [15] takes full use of this since it

provides the Schur-Cohn minors (that is, the principal minors of the Hermitian Schur-Cohn

matrix) directly from its entries [15], [17]. A similar simplification applicable to 6-systems

is clearly possible if condition II may be reduced to checking positive definiteness of a

Hermitian matrix.

With the above in mind, we develop the following in this paper: (a) Tabular form

for stability checking of 6-system characteristic polynomials possessing complex-valued

coefficients, (b) Analogs of Schur-Cohn minors and a corresponding Hermitian matrix

applicable for such systems, and (c) a direct stability checking algorithm for 2-D S-system

transfer function models.

The paper is organized as follows. Section 2 introduces the notation used throughout

and a brief review of previous results. Section 3 develops a tabular form for stability

checking of 6-systems with complex-valued coefficients and some important relevant results.

Section 4 presents quantities that may be regarded as the analogs of Schur-Cohn minors

for 6-systems. The 2-D stability checking algorithm in Section 5 is based on the tabular

form for real-valued coefficients [6]. Since only little extra work is needed, results in both
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Sections 3 and 4 however are developed for the more general complex-coefficient case.

Section 6 presents an example to validate the results. Section 7 contains the conclusion

and some final remarks.
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2. Preliminaries

2. 1. Notation

R, ! Real and complex number fields.
Rpxq, vpxq Set of matrices of size p x q over R and Qr, respectively.

var{-} Number of sign changes in the sequence {.} of real
numbers.

Re[.], Im[.] Real part and imaginary part of [-] E

F•] Complex conjugate of [.] E a.

AT, AI, A* Transpose, complex conjugate, and complex conjugate
transpose of A E !OP×q, respectively.

R?[wJ,, ![w]n Set of univariate polynomials of degree n (with re-
spect to the indeterminate to E Q) over R and Q,
respectively.

3R(w) Set of rational univariate polynomials (that is, quo-
tient of univariate polynomials) over R.

R[Wt],n, [w21,,, Set of bivariate polynomials of relative degrees n,
and n 2 (with respect to the indeterminates u 1 E C
and w2 E Q, respectively) over R.

R(tI, w2 ) Set of rational bivariate polynomials over R.

z, c Indeterminates of q- and 6-systems, respectively.

T Real positive number, usually the sampling time.

The transformation relationship between corresponding q-and 6-systems is

_ -1 z-1
6 =q C= z (2.1)

[-] q-system quantity analogous to its corresponding 6-
system quantity [-]; for example, transfer function
of a given discrete-time system is either H(c) if im-
plemented based on the 6-operator or ft(z) if imple-
inented based on the q-operator.

H(c)Izc-. G(c)Ic=.-_1/r,

H (cg,,C2)1,:_. 11(C1 ic2)1;,=(z.'l- )/r, i=1,2

G ( z i , Z 2 ) 1 .,.,_ o Z ) .i 1 + c i = ,
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Stability studies of 1-D and 2-D q- and b-systems involve the following regions:

Uq, U2 {z E Q: IZi < 1), {(ZI,Z2) E I2 • z• < 1, i = 1,2}.
-2

Uq, Uq {z E !a: 1z <1_ 1i, {(z,,z2) E Q2 Izil 1 1, i = 1,2).

T, % {z (Z E IzI = 11, {(z 1,z 2 ) E Q2: I Z, = 1, i = 1,2).

u6, U2 {c E ! Z: Ic + 1/rI < 1/-r}, {(c,,C2) E !2 : Ic, + 1/1r <
1/, i= 1,2).

Z16,11 {c E Ž: IC + 1/rI < 1/T), {(cj,c 2 ) e I4 + 1/ri <

1/T, i = 1,21.

T6, T6
2  {c E !: Ic + I/TI = 1/T}, {(cI,c 2 ) E !2: IC, + 1/rI =

1/T, i = 1,21.

To avoid unnecessary notational complications, the sampling time in both horizontal and

vertical directions is taken to be equal to T > 0.

To emphasize the degree of F(w) k=o a)wk E Q [w]ln we sometimes denote it

as F(w)n as well.
on (n)k

F(w) Conjugate polynomial of F(w), that is, E - a( w

FO(z) Reciprocal polynomial of F(z), that is, znF(1/z)

FI(c) Reciprocal polynomial of F(c), that is, (1 + "c)n

A q-system polynomial is q-symmetric if F(z) = FO(z). A 6-system polynomial is 6-

symmetric if F(c) = FI(c).

Tabular forms of stability checking of a polynomial in !'[W]" typically employ a sequence

of polynomials each of descending order. The first row of such a tabular form is denoted

as row #n, the second row is row #n - 1, and so on.

JT, MJT Jury table [18], modified Jury table [15], [171.

real-q-BT Bistritz table for q-system polynomials with real-
valued coefficients [11].

complex-q-BT Bistritz table for q-system polynomials with complex-
valued coefficients [19].

rcal-6-BT Table form for b-system polynomials, with real-valued
coefficients [6].

coni1)lcx-b-BT Table form for b-system polynoinials with comiplex-
valued coefficients (this paper).

, , ,, i i II I I
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A q-system polynomial with all its roots in Uq (for the 1-D case) or U' (for the 2-D case)

is said to be stable. The corresponding regions for a 6-system polynomial are U6 (for the

1-D case) or 71 (for the 2-D case), respectively.

2.2. Review of complex-q-BT

The complex-6-BT introduced in Section 3 is based on the complex-q-BT, and hence, we

briefly review it now. For more details, see [101. Let the characteristic polynomial of a

q-system be
n

F(z) = aZ')z' E [Czjn with P(1) E K and P(1) $0. (2.2)
k=o

The complex-q-BT is formed using the symmetric polynomial sequence {t(z)}!'=o

where [19]

F(Z). + PO(z)., for i = n;

Ti(z)z, z.1 for i= n- 1; (2.3)

(6i+2 + bi+ 2 z)T(z)i+l - T(z)i+ 2  for i =n- 2,n- 3,...,0,
z

where
-__ t(0)~ 2  Ai+2)
- (0)i+2 = to i =n-2,n- 3,...,0. (2.4)

As in [11] and [191, equating similar powers on either side, we may also get the following

determinental rule: For k = 0,1,...,i, and i= n - 2,n- 3,...,0,

1 i+2) jjz+2) 1 -li+2) 'If i+2)
~i) = tl + ti+2 tk+1

,(i(it~ + i) 4j1) ) I ( + )+1(2.5)to 0k+I oi t i+l t

Remark. The computational advantage of BT is due to T(z)i being q-symmetric. This
I-f(0)

implies tk = ti-k , k = 0, 1,... ,I z, and hence, it is necessary to evaluate only half the

coefficients of each row.

Using (12-13), (16), and Theorem 6 of [191, we get
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THEOREM 2.1. [19] The polynomial F(z) E £a[zJ] is q-stable iff

I.t j0, i=n-l,n-2,...,0, and

II. v,, - var{T(1),,T(1),_.,.-. ,T(1) 0 } = 0.

2.3. Some results on 2-D stability

Consider the 2-D q-system transfer function

E(z1 , Z2)E~zl, 2) =) E R(zj,,z2) (2.6)

F(zi, z 2 )

where t(zl,z2 ) E R[zll,,f[z2]] 2 and P(Z, Z2) E R[zl]J.[z2]. 2 . The 2-D z-transform is

taken using positive powers of zi. For a comprehensive discussion regarding stability of

such systems, see [9-10], and references therein. Hence, for reasons of brevity, only some

analog results applicable to 2-D 6-systems are provided. It is only necessary to observe

that the corresponding 6-system H(cl, c2 ) satisfies

H(clC2) = E(c,,c 2 ) = A(Z1,z2 )l-- E R(cl,c 2 ) (2.7)
F(cl, C2c)

where E(cl,c 2 ) E •R[cl.],[c 22l.2 and F(cl,c 2 ) E R?[Ic]"I[c2 1]2 . In the remainder of this pa-

per, we will only be dealing with transfer functions H(cl, c2 ) that are devoid of nonessential

singularities of the second kind on T6
2 and the pair E(cl, c 2 ) and F(ci, c 2 ) is taken to be

--r2

coprime. If the 2-D polynomial F(cl, c2) $ 0, V(cl,c 2) E U6 , it is said to be ,-stable. After

using (2.1), the following result follows directly from [20]:

THEOREM 2.2. The 2-D 6-system in (2.7) is 6-stable iff

I. F(cl,-1/r) j 0, Vc, E lbt, and

11. F(c I,C2 ) ý6 0, Vci E 7"6, Vc2 E 116.

The following result, which allows one to use the real-6-BT, is directly from [21-221

after using (2.1):

Ti[EOREM 2.3. The 2-D 6-system in (2.7) is 6-stable iff

I. F(ci,-1/r) j 0, VcI E U6, and
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II. G(x,c 2 ) j 0, VX E [-2/r, 01, Vc2 E Ul.

Here G(x,c 2 ) = F(ci,c2 )F(,E,c 2 ) E-
I==(c 1 +fj )12

2.4. Schur-Cohn minors

In stability checking of 2-D q-systems, the following result is important:

THEOREM 2.4. [15], [23-24] The polynomial P(z) E ![z],, is stable iff A• > 0, i =

1,2,... , n, where Ai is the principal minor of the Hermitian Schur-Cohn matrix F = P =

' E !.n. defined as

"lij = Z(an-i+kan-j+k - ai-kai-k), for i < j.

k=1

Stability checking of 2-D q-systems then involves positivity checking of all Schur-Cohn

minors Aj(z), Vi = 1, 2,... ,n, VjzI = 1. A necessary and sufficient condition for this is

positivity of A,(1), Vi = 1,2,... ,n, and An(z), Vizi = 1. This is the simplification due

to [161 that has been effectively utilized in applying the MJT [151. The advantage of the

latter is that its entries yield the Schur-Cohn minors directly. The fact that complex-q-BT's

entries also yield the Schur-Cohn minors was only recently shown.

THEOREM 2.5. [iO1, [25] The Schur-Cohn minors of F(z) are the principal minors of

the (n x n) tridiagonal Hermitian matrix

Re[4T0)2•n._1)] 2rjt -_ ) "-2 ) 0 0 0
_ 2 tn-1 0 J

1[n--l) n--2)] R[4n-Ot -2)] [C-2)3) . 0 00[• - ] R [o - • -'2•) 2[ -.2•)ro - ] "" 0

S 0 _[3n-2) 0 0

0 0 0 . Re[.. 2 j ') 1 ') -()4O)]
0 0 0 o °,(o)
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3. Complex-b-BT

With no loss of generality, consider the b-system characteristic polynomial

n

F(c) =ja(") ck E '[eCl n, (3.1)
k=O

where

a0 E and o" > 0. (3.2)

We now construct the complex-6-BT with the use of the 6-symmetric polynomial se-

quence {T(c)i}7=o where

F(c). + F'(c)., i n;

T(c)i= F(c)j - F(c)n n (3.3)

(bi+2 + i+2•( + rc))T(c)i+l - T(c)i+2 i <n - 2.
1 + TC

Here

6i+2 = T(-1/2)i+l i = n - 2,n - 3,... ,0. (3.4)

The normal conditions required to complete the sequence are

T(-1/r)i # 0, i = 1,2,...,n- 1. (3.5)

Remarks.

1. To determine 6-stability of F(c), one may of course first obtain F(z) = F(c)lc-.. and

then determine its q-stability by applying familiar stability checking algorithms (e.g., BT

or MJT). The possible shortcomings of such a scheme are outlined in [1] and [6]. The

purpose here is to obtain a direct check for 6-stability.

2. We follow the work in (6] and [19], and hence, for brevity, all details are omitted.

3. The conditions T(-1/r)i = 0, for some i = 1, 2,... n - 1, imply certain singular condi-

tions on the root distribution of F(c) [11], [19]. The equivalent singular conditions for the

real-6-BT is in [6].

4. Using 6-symmetry, it is easy to show that-

T(-1/r)i ri z = 0,1,... n. (3.6)i--i -"'
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Therefore •i2)
1 tý

++2 == +) i= n-2, - 3,...,0. (3.7)
3i+l

The normal conditions in (3.5) may now be expressed as

i+1 3 0, 1 = n- 2,n- 3,...,0. (3.8)

Analogous to [6], [11], and [19], we then have

THEORE•M 3.1. The polynomial F(c) E !Ž[c]n is stable iff
I. tý') 3 0, Z'= n -I,n--2, ... ,11, and

II. v, = var{T(O)n,T(O),- 1 ,... ,T(O)o} = 0.

One of the main advantages of the complex-q-BT is that all computations may be

carried out through real arithmetic only [19]. The same holds true for the the complex-6-

BT introduced above as well. To see this, let

T(c)= S(c)j + jA(c)i with 6, = Re[6,] + jIm[6,], (3.9)

for i - 2, 3,..., n. It is easy to show that S(c)j's and A(c)j's form sequences of 6-symmetric

and 6-antisymmetric polynomials, respectively. Now, (3.3) may be expressed as

1

S(c)i-2 = 1 + [Re[6i](2 + rc). S(c)i- 1 + Im[6i]Tc . A(c)i-1 - S(c)i]"+1 T (3 10)

A(c)i-2 = -- [-Im[birc . S(c)ji- + (2 + rc)Re[6,J - A(c)ji - A(c)j],
1 + rc

for i = 2,3,...,n.

Remark. Note that, T(O)i = S(O)i + jA(0)j = S(O)i.

In the real-6-BT construction, a certain 'scaling' of {T(c)}!'•0 was useful [6]. We

use the same technique in the complex-6-BT case as well, thus providing the following

advantages: (a) Terms containing T are avoided during construction, (b) 6i and vi may be

deduced by simple inspection, and thus (c) computational effort is reduced.
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The sequence of polynomials that incorporates 'scaling' is {U(C)i } '=0 where

U()i' uki) = u -•- , k=-0,1,...,i, (3.11)
k=O c-/

for i = 0, 1,..., n. Thus, from (3.3), we get, for i n - 2, n - 3,.. 0,

+ ( _+) U~i+2).U (Oi) = = ( 6i+ 2 + Si+ 2 )U ~o i l 0- U i ( 3 .1 2 )

Uk = +--i+2Uk_--ul + u()_ , k= 1,2,.

Note that
i+2I- 1i+2 ui+2

bi__ - - =n-2, n-3,...,0, (3.13)
•i+i ui-i-

and
t/= var{T(O)i1}! 0 = var{lui)}U=. (3.14)

Therefore, condition II of Theorem 3.1 may be checked by inspecting the constant coeffi-

cients of {U(0)i~}ti 0.

Remark. Onc may use the same 'scaling' strategy in an implementation that uses only real

arithmetic.

Relationship between complex-q-BT and complex-S-BT

As was agreed upon previously, given F(c)n E r[z], let us use the notation F(z),, to

indicate
F'(z). == )F(c). L•-. (3.15)

where A E W is a possible scaling constant. The establishment of the relationship be-

tween the rows of complex-q-BT of P(z), i.e., {t(z)i}J'=, and complex-6-BT of F(c), i.e.,

{T(c)i}=o0 , which is the subject of this section, is useful later in obtaining the Schur-Cohn

minors from the latter.

CLAIM 3.2.

Pt(z),, = AFO(c),,,I
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Proof. Note that

, (i) = Az"F(Fc)z"c),, (= z);Fý () -- )• n ,I )n-

F1(c),, = (I + rc) (1 -c . = z" ,

The claim is thus proven.

THEOREM 3.3. The rows of the complex-q-BT of F(z) and the complex-4-BT of F(c) are

related by
T(z) -"AT(c) I I=

{T(c)i I z = n- 1,n - 3,....

Proof. First, using Claim 3.2, note that

T(z), = AT(c),

Thus, Theorem 3.3 is established for i = n. i = n - 1 may also be established directly.

For i = n - 2, n - 3,...,0, use (2.3) and (3.3). U

COROLLARY 3.4.
1 i0 rt' ), fo -- -- "'"

= \ t.i), for i=n-l,n -3,...,

ti for i n,n 2,.•

-iT-:Ti , fori= n -- 1,n - 3,....

Proof. This follows directly from Theorem 3.3. U



4. Schur-Cohn Minors for 6-Systems

We now develop quantities that may be considered the analogs of Schur-Cohn minors for

6-system polynomials.

LEMMA 4.1. The relationship between the complex-6-BT of F(c), E ![(c],, and the Schur-

Cohn minors A , i = 1,2, ... ,n, of F(z)n E %[z]n is

,• •2 (n /÷n 1~)-,(ni) •~ ~)(~ )•
I [(t 7'+ 1 t ,(n-i+l) (-i)Ai-22(n-i+l)• \n-i+l "n-i +- tn-i+l tn-i Li-

2\2 _n(n--i+l)(n--i)12
2r2(ni+l) Itn-:i+l n--i I"i-2 AO = i, Ai =0, < 0.

Proof. Note that, the relationship between the complex-q-BT of F(z). and its Schur-Cohn

minors are given by [251

A 1 [ -i+l) _Ani) + 1-) lZ~n--+l)(n-i)0i2]2i = t- _ t~ tO,2.-t+, •.-i IA-

with A0 = 1 and A, = 0, i < 0. Now, the claim follows from Corollary 3.4. U

Let

D =diag ETg•x. -- X, n. (4.1)
, n T

Then, from Lemma 4.1, A in Theorem 2.5 is given by

A=A 2 . D-A. D (4.2)

where
" - Re[t("1)(2n-2)1 0 "" 0

r [t(n - ) j n 2)] Ret~ - .) 0n2 [~ )( )
2ln--I _-2 -- -- 2l _-2 n--3 0

0 -rt(n-2 )t (n-3) Re[4(n. 2 )1 .3 3 )] " 0 (4.3)2t n--2 n--3 n -- 2 -

0 0 0 *.. Ro[I t)1° j

Clearly, positive definiteness of A and A are equivalent statements. Hence, we may

consider the principal minors of A to be the Schur-Cohn minors of F(c).
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DEFINITION 4.1. The Schur-Cohn minors of F(c) E £1[c], are the principal minors of the

tridiagonal Hermitian matrix A in (4.3).

Therefore, from Theorem 2.4, we have

THEOREM 4.2. The polynomial F(c) E 2[c],, is stable iff Ai > 0, i = 1, 2,..., n, where Ai

is the (i x i)-principal minor of A in (4.3).

Remarks.

1. Tridiagonal Hermitian matrices constitute an important class of matrices that have

been extensively investigated in matrix theory literature [261. See also [10].

2. Since the Schur-Cohn minor &, obtained from the complex-q-BT are necessarily

proper [10], [25], the Schur-Cohn minors defined above for 6-systems are proper as well.

In terms of the 'scaled' sequence of polynomials {U(()j}L=0 , Theorem 4.2 may be

stated as

COROLLARY 4.3. The polynomial F(c) E SŽ[c], is stable iff A• > 0, i 1,2,...,n,

where &j is the (i x i)-principal minor of

e (n•'-) 2 n•(-1 (n-2)

-R[U (n ,,(n-2)] -Ret .- i u.(-2 I 0i (-) n -3) - 0

2 n-2-- n-3- n- -

o u o .1 ~ 3 ] • 43

o0 0 ... 0

Proof. Using (3.11), and factoring out the appropriate diagonal matrices, the result im-

mediately follows.

Remark. Again, notice how the use of the 'scaled' sequence simplifies the entries.



5. Algorithm for Checking Stability of 2-D 6-Systems

To check condition II of Theorem 2.2, we may adopt the following approach:

(a) Express F(ci,c 2) E R[cl],,[c2]1,2 as a polynomial in Qf[c 2]I 2 so that its coefficients, as

well as the corresponding Schur-Cohn minors, are parameterized by cl E T6 . Here, we

have assumed that n, >_ n 2 ; otherwise, the roles of n, and n 2 may be interchange,

(b) Check positivity of each of the Schur-Cohn minors, or positive definiteness - he

tridiagonal Hermitian matrix A E !n2Xn2, for all ci E T6 (see condition 11 of Theorem 2.2

and Theorem 4.2). These checks may be simplified by applying a direct extension of Siljak's

result [16].

However, construction of the complex-6-BT and the entries of A require complex

conjugation of certain entries that are functions of cl E Ts. This of course complicates the

scheme since ei = -ci/(1 + rc 1 ), Vci E T6. On the other hand, in dealing with 2-D q-

system stability, we have ii = 1/z1 , Vzi E Tq. This simple relationship has led to stability

checking schemes that use the complex forms of tabular forms [10] that incorporate the

polynomial array method [27]. To circumvent the above difficulty, the algorithm given

below uses the real-b-BT in order to check Theorem 2.3. In the appendix, an easily

implementable algorithm that yields

G(x,c 2 ) = G(=)n,(c2)2, = F(ci,c2 )F(ei,c2 )1 E 7, E R[X]., [C2 12n, (5.1)
z--(cl +E,)/2

is provided. Note that

ci E T6 €=ý' x E [-2/r,0]. (5.2)

Before proceeding, however, it is important to note that tabular methods are useful

in checking for no roots to be outside the stability region. However, since in typical 2-D

stability studies the 2-D transforms are taken with positive powers [9-101, prior to applying

the stability check, the following 'preparation' must be done:

(a) Condition I in Theorem 2.3 may be checked by explicitly finding the roots or applying

the real-S-BT to ensure

FS(cj)(-1/T)-- (1 + rc1)"'F ( +,c \(
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(that is, polynomial is reciprocated with respect to ci).

(b) First form

2n2 nIS(2n2), (2 2), (n2
G(z) 1 .(c2)2  = ,Z._3g(E (,)c) E 5[z]R1[c212., where g• 2 ")(z) = xg(2nR)zk E R~z],. (5.4)

1=0 k=o

Here x E [-2/r, O]. Now, condition II in Theorem 2.3 may be checked by applying the

real-6-BT to ensure

2n2 nI

(2n) (n2).T)= E,(2n 2 )_k
- g ~ci where ERz.L.,1TJ2 (C) E, z RH, ,,,

1=0 k-O_"G(Z)'(C2)(.)

= (1 + rc 2) 2 2G(z) (1 0, V, E f-2/r,O0, W2 E !a\U6

(that is, polynomial is reciprocated with respect to c2 ). Again, x E [-2/'r, 01.

We will hence implicitly assume that the given 2-D b-polynomial has already been ap-

propriately 'prepared' as above. In addition, the construction of the real-b-BT for G(x)(c2 )

requires ensuring (11]

•• 2)(x) #0 and (2fl) > 2 , Vx E f-2/r, 0]. (5.6)

Violation of the first condition in (5.6) is equivalent to

F(ci)(0) = 0 for some ci E T7. (5.7)

Assuming, with no loss of generality, '(22) > 0 for some x E [-2/r, 0], violation of the
Asuig wihn oso eeaiy,2n2

second condition in (5.6) is equivalent to

F(ci)(-1/r) = 0 for some cr E T6. (5.8)

Therefore, each of these violations imply instability. Verifying condition (5.7) must be

included in the algorithm. Condition (5.8) is automatically verified when condition I in

Theorem 2.3 is checked (see (5.3)).
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Then, we have the following

THEOREM 5.1. The 2-D 6-system in (2.7) is stable iff

I. F(c,)(-1/r) 4 0, Vc, E U6 , and

II. F(cl)(0) j 0, Vcl E T6 , and

III. Ai(0) > 0, Vi = 1,2,.. .,2n2 , and

IV. A 2, 2 (x) > 0, Vx E [-2/r,0], which is satisfied whenever A2n•(X) $ 0, Vx E [-2/r, 0],

together with condition 11.

Here, A is the Hermitian matrix mentioned in Theorem 4.2 corresponding to G(x)(c2 )

where x E [-2/r, 0].

Conditions I and II in Theorem 5.1 are easy to carry out (they may in fact be verified

by explicitly finding the roots). Condition III and IV require construction of the real-b-BT

and the Schur-Cohn minors for which we now develop polynomial arrays [27]. We also

provide a scaling scheme so that the numerical reliability of the resulting algorithm is

enhanced.

5. 1. Polynomial array for entries of real-b-BT

Express G(x)(c 2 ) as

G(x)(C2 ) = X G . c•2n) (5.9)

where x(f) = [xnt x"'-,..,l]T, ) = [C"2,c2 l,...,l]T, and G = {g1 i,j} E

R(ni•+)X(2n 2 +1) is the coefficient matrix. Then, it is easy to show that [6]

G(x)(c2 ) = x(').G c(2n2) where G ý2n2)- 1 P(2n2)r(2n2). (5.10)

Here

"r(2n2) = diag{rr2 n2,T 2 n2- 1 ,.. . 1,} e E (2n2+1)X(2n2+I);
(5.11)

p( 2n2) = {pji.} E (2n 2 +1)x(2,,,+1) where P,, = (-1)2712+1-iPj.

The elements pi,, which in fact are those of the Pascal's triangle, are given by

0, for i <j;

Pii = 1, for i = J; (5.12)
1pi- lj-_ I + pi- 1ji, elsewhere.
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The real-b-BT is constructed using the 'scaled' polynomial sequence in (3.11-14). Let

H(y)() = G(x)(c2 ) I .=-,,. (""-'/" (5.13)
H(y)(C) = G(x)'(C2 ) I..-- = G(.r)(C2 ) I c=_,,,

Z=--N/r Z=f-,/,

Note that, x E [-2/r,0] iff Y E [0,2]. Now, using (5.9-12), row #2n 2 and 2n 2 - 1 of the

corresponding 'scaled' real-6-BT are given by

2n,
U(y)(C)2, 2 = E (2"21, = /(y)(C) + H(y)(C)

1=0

= y(-,)' . i-,)-' G -(2n2)-'(i(2n2) + P( 2 f2)) (2-,);

= (2n2--) /t = H(y)(C) - H(y)(C) (5.14)

= y (ni)' _ j+fll)- rTG-I2n2)-'(j(2n2) _ P(2fl2)). [2 0 ]1
where C(2 n2) = [( 2 n2,( 2 n2-l,..., l]T, and

+(n,) = diag{(-r)nl,(-r) l-I',...,1} E 3(,,+,)X(,,+ );

j(2n2) = diag{(_l)2f, (_1)2n, ,...,1} E R(2n2+1)x(2n,+1); (5.15)

P(2n2) = {3Pij} E 3(2n2 +1)X(2n 2 +1) where iPij = (-1) +jpij.

Each element of the remaining rows is of the form

ut4)(y) n i)(y) =0, 1,.. ,i, i = 2n 2 ,2n 2 - 1, ,0, (5.16)d(i)(y) - ..

where n~i)(y) E R[y].,,i) and d(')(y) E 3[Y],(,). Substituting in (3.12), it is easy to show

that, for e = 0, 1,.. .,,

n(i) (n1i+2) (in+1 ) 2n~(+')) - ) (i+2) + for i = 2n 2

t- a+2 )( 1 -- h+1 + ,

P)= 1, for i = 2n 2 ,2n 2 - 1, (5.17)
d) d(+)n+), for i = 2n 2 - 2,...,0.

(n )= (2n2) (2,12-1) (2n2-1)

Note that u, 2"2) = (2 and u( =?nit . Moreover

or(i) = (nI, for i = 2n 2 ,2n 2 - 1,
ori(+2) + (i+1), for i = 2n2 -2,..., 0;

0, for i = 2n 2 ,2n 2 - 1,ri)n I, fori2= 2n2 -2,..0.O
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Scaling scheme. Let us scale rows #2n2 and #(2n 2 - 1) so that each coefficient takes

values in (-1, 11. Correspondingly, for t = 0,1,... ,i; i = 2n 2 ,2n 2 - 1, let

= tie 
(5.19)

d(i) =,(op),~)

where P(),-^(') > 0, i = 2n 2 ,2n 2 - 1, are the scaling constants and [:] denote scaled

quantities. Note that
(2n2) A( 2 n,) -(2n2)

d(2n2) 7(2'12) d(2n2) '

d(2n2-1) -( 2 n2-1) d(2n2-")

Now, substituting in (5.17-18), we get

n(2n2-2) n(2n2 -2)
= .(2n2) ( .(2n2--1) - 2 2n2 -1) (22-) -t(2n2 ) +A(2n,))A(2-2-1) i2n2. I, e-1 2ftA2n2-1 f t +A(2,n,)A (2n2-1) '(.1

d(2n2-2) (5.21)22-1

7( 2 n2)A ( 2 n2-1) 2n2-1

It can now be seen that, it is only necessary to compute the quantities on the left hand

side of (5.21). Then, one may scale these to get

(2n2 -2) = A (2n2)A (2-')A,((2,1-2)i• 2 "1- 2 );
t 1 -(5.22)

d(2n2-2) = 7-(2n2) ,(2-2-2)A(2-2-1)d(2n2-2).

Note that
n(22n2-2) A,(2 n2)A(2 n2- 2 ) ii(2n2-2)

d( 2 n2- 2 ) - 7(2n2))7(2n2-2) d(2n2-2) (5.23)

Continuing in this manner, the computation of the entries of real-6-BT may be summarized

as follows:

(a) From (5.14), compute ni),d('), i - 2n 2 ,2n 2 - 1.

(b) From (5.19), use scaling constants P)(,-(), i = 2n2,2n 2 -1, to get fi),d(i), t

2n 2 ,2n 2 - 1.

(c) From (5.21), for e = 0, 1, ... , i; i = 2n 2 - 2,. . .,0, compute

T~i, .. (i+2) t(+1) 27-i+1)) t Z+1 -

K n() K it + n(5.24)
d(') = d(i+2),l (i+ 1)

K (') . .i+ 1
d
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and use scaling constants AW,,-y('), i = 2 n2 - 2,... ,0, to get iA), P), i -2n 2 - 2,...,0.

Here, K(n and K() are constants.

(d) Notice the relationships

n~i) • •(,,,=)•(=•=-2...,\M i~j
"n ((') )-. ( "n-- ) '.._,() J-1•TN ' for i = 2n 2, 2n 2 --2,. .. , 0;P) %fon2i1)=\-2n2-- -3) 2o.,;(5.25)

-(2n2-1),,(2n2-3)....,(i) "3', for i = 2n 2 - 1,2n2 - 3,..., 1.

5.2. Polynomial array for Schur- Cohn minors

Each Schur-Cohn minor obtained from the table, in general, will be of the form

ND()(y) E R(y), i = 1,2,...,2n2 , (5.26)

where N(')(y) E R[y],(i) and D(')(y) E R[yje(i)" From Corollary 4.3, we get

A i (y) = -(U2n2-i+l) U(2n2-i z)Ai 1 ( (2n2_i+1)2 U(2n2-i)2 i i = 1,2,...,2n2 , (5.27)

where A0 --*1 and Ai = 0, Vi < 0.

Remark. Actually, as in [10], one may show that, for stability determination purposes, only

the numerator polynomials of Ai need be computed. However, to contain the orders of the

resulting polynomials, and hence improve numerically conditioning, we do not recommend

this scheme.

Scaling scheme. Due to the scaling of entries of the real-b-BT, computation of A,, i Z

1,2,... ,2n 2 , may be modified as follows: Let

A u(2n2)_ (2n2-1)

A(2 n2) A(Th2-l]) - (2-2) .. (2n, -1) (5.28)A2n 2 n2n 2 -- I

7(n22),y)(2n2-1) d(2n2)d(2n2-1)

Hence, it is only necessary to compute the quantity

S(2n2) .i(2F12- 1)
A, -- n2n2 2n2-1 (5.29)

d(2( 2)d(2n -2 -)
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Continuing in this manner, the computation of the Schur-Cohn minors may be summarized

as follows: From (5.27), for i = 1, 2,..., 2n 2 , compute

. (2n 2 -1+ .- ) -(2f(2 -- ) 0 j (2n'-I+1) - (2i 2 -, ) ]
2n 2 -i+1 _ 1 \(2n2 2n2-i+1 f2 -_
= - I + - Ain2 -5.30

d( 2 n2-i+i)d( 2n2 -i:) I 4(2n 2 -+ d(2n 2 -i+0)d(2n 2 -u_ A,_) (5.30)

where A0 - 1 and A, = 0, Vi < 0.

Remark. Note that, since Ai(y) is necessarily a proper polynomial (that is,.denominator di-

vides numerator properly with no remainder), and not a rational polynomial (see Remark 2

after Theorem 4.2), it is easy to see that d(2n2-i+i)d(2n2-) must divide A(n2 2-i+l0 A (2n2-0_

exactly.

5.3. Algorithm

The following result, which is the basis of the stability checking algorithm, is now obvious

from [10] and Theorem 5.1:

THEOREM 5.4. The 2-D 6-system in (2.7) is stable iff

I. F(c,,-1/,r) : 0, Vc, EU 6 , and

II. F(ci)(0) € 0, Vc, E T6, and

III. Aj(0) > 0, Vi = 1,2,..., 2n 2 , and

IV. A 2. 2(Y) / 0, Vy E [0,2].

The 2-D stability checking algorithm may now be summarized as follows:

GIVEN.

A 2-D 6-polynomial F(c 1 ,c 2 ) E R[c 1],,[c2Jn 2 . Without any loss of generality, assume

that n, > n2, and express F(c,,c2 ) as F(c,),,,(c2)n,.

STEP I. Condition I of Theorem 5.4:

Apply an explicit root location procedure. If result is satisfactory, proceed; otherwise,

system is unstable.

STEP II. Condition II of Theorem 5.4:
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Apply an explicit root location procedure. If result is satisfactory, proceed; otherwise,

system is unstable.

STEP III.

Form G(y)(c 2 ) using the algorithm in the appendix; then form U(Y)(() 21, and

U(Y)(C) 2 2 -.1 from (5.14). These yield n2) and n,2fl-') Of course, d(2n2) = d(2 n2'- =

1.

(2n 2 ) (2n 2 -1)From (5.19), obtain fit A , and the associated scaling constants )\(2n2)

and A(
2

n2-1). Of course, d(2n2 ) = d(2n2-1) = 1 and .Y(2n 2 ) = .,(2n2-1) 1.

STEP IV. Condition III of Theorem 5.4:

Form A1(y) from (5.30) and check whether A1 (0) > 0.
•(2n2--2) (n -

If result is satisfactory, form ht and j(2n 2 -2) and the associated scaling constants

A( 2n2- 2) and 7(2n2-2) from (5.24). Form A2(y) from (5.30) and check whether A2 (0) > 0.

If result is satisfactory, proceed likewise until A2n 2(0) > 0 is checked. Note that, this re-

quires checking of only the constant coefficients. If result is satisfactory, proceed; otherwise,

if the check fails at any i = 1,2,... , 2n 2 , system is unstable.

STEP V. Condition IV of Theorem 5.4:

Apply an explit root location procedure to check whether A/2, 2(y) #ý 0, Vy E [0,21.

Remarks. The possible numerical difficulties that may arise in using explit root location

procedures may be avoided as follows: (a) Steps I and II may be verified using the real-b-

BT [6], and (b) step V may be verified by the Sturm sequence method.



6. Example

The stability checking algorithm presented in the previous section is now illustrated

through an example. Polynomial entries are denoted using a self-explanatory shorthand

notation where the highest degree coefficient is written first. Moreover, only four decimal

digital on the mantissa are shown.

Consider the 2-D polynomial

[1 50 740 12
F(ci,c2 ) 0 1  11 52 2700 38480 c2

740 38480 547600 1

with the sampling time r = 0.1 s.

STEP I. Condition I of Theorem 5.4:

By applying an explicit root location procedure, one can show that

F(ci)(-1/r) = 340c2 + 16680c, + 236800 :A 0, Vci E 116

STEP II. Condition II of Theorem 5.4:

By applying an explicit root location procedure, one can show that

F(ci)(0) = 740c2 + 38480c, + 547600 # 0, Vc, E Tb.

STEP II. Using the algorithm in Appendix, we get

[1.2800e + 03 1.2992e + 05 5.1904e + 06 9.6141e + 07 7 .0093e + 081 [(2 1
G(y)(() - [y 2 y I] 5.2480e+04 5.4011e+06 2.1662e+08 3.9968e+09 2.8738e+ 101

5.4760e + 05 5.6950e + 07 2.2912e + 09 4.2143e + 10 2 .9987e + I I IJ

After scaling, rows #4 and #3 are computed as follows:

(4) = (1.2859e - 02, -5.0693e - 02, 5.1315e - 0f"

ft(4 = [-7.9833e - 02, 3.1991e - 01, -3.2798c

(4)
h = [1.967le - 01, -7.9909e - 01, 8.2798e - 01];

(4)f, = [-2.3375e - 01, 9.5836e - 01, -1.0000c + 00];

f, = [1.1687e - 01, -4.7918e - 01, 5.0000e - 01],
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with A (4) 1 .199 5e + 12, and

f(,) = [-2.4050e - 02, 9.4053e - 02, -9.4595e - 02];

A2) _ [1.3044e - 01, -5.1542e - 01, 5.2252e - 01];

A) =[-2.4703e - 01, 9.8194e - 01, -1.0000e + 001;

A0) = (1.6469e - 01, -6.5463e - 01, 6.6667e - 01],

with A (s 3 5.3490e + 10. Of course, d(4) = d(3) = 1 with 7(4) = (3) .

STEP IV. Condition III of Theorem 5.4:

We get

A, = [3.0926e - 04, -2.4286e - 03, 7.2184e - 03, -9.6217e - 03, 4 .8541e - 03].

Clearly, &j(0) = 4.8541e - 03 > 0.

Now, row #2 is computed as follows:

,t2) = [-8.8619e - 03, 6.8253e - 02, -1.9920e - 01, 2.6099e - 01, -1.2957e - 01];
h2) - r3 .3584e - 02, -2.5969e - 01, 7 .6068e - 01, -1.0000e + 00, 4.9793e - 01];
t(2) = -3.3584e - 02, 2.5969e - 01, -7.6068e - 01, 1.0000e + 00, -4 .9793e - 01],

with A(2) - 4.24 2 0e - 02. Also,

d(2) = [-2.5424e - 01, 9.9428e - 01, -1.0000e + 001,

with -y(2 ) - 9 .45 9 5e - 02. We get

A2 = [1.8046e - 07, -2.8190e - 06, 1.9343e - 05, -7.6148e - 05, 1.8810e - 04,

- 2.9857e - 04, 2 .9737e - 04, -1.6992e - 04, 4 .26 54e - 05].

Clearly, A-2 (0) = 4.2654e - 05 > 0.

Now, row #1 is computed as follows:

-f [2.5168e - 03, -2.8515e - 02, 1.3555e - 01, -3.4597e - 01, 5.0000e - 01,

- 3.8792e - 01, 1.2 6 2 3e - 01];

.- _5.0336e - 03, 5.7031e - 02, - 2 .711Oe - 01, 6.9194e - 01, -l.0000e + 00,

7. 7 584e - 01, -2.5 2 46e - 01],
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with AW1) = 3 .0980e - 02. Also,

P) = [-3.3954e - 02, 2.6151e - 01, -7.6322e - 01, 1.0000e + 00, -4.9646e - 01],

with -y(') = 2.6099e - 01. We get

A3 = [4.0500e - 10, -9.3525e - 09, 9.9260e - 08, -6.4020e - 07, 2.7947e - 06,

- 8.6990e - 06, 1.9797e - 05, -3.3188e - 05, 4.0679e - 05, -3.5552e - 05,

2.1029e - 05, -7.5594e - 06, 1.2489e - 06].

Clearly, &3 (0) = 1.2489e - 06 > 0.

Now, row #0 is computed as follows:

0ii() = [-1.0487e - 04, 1.9379e - 03, -1.6174e - 02, 8.0291e - 02, -2.6251e - 01,

5.9070e - 01, -9.2642e - 01, 1.00OO0c - 00, -7.1104e - 01, 3.0076e - 01,

- 5.7473e - 02],

with A\() = 4.4719e - 02. Also,

d(0) = [-6.7946e - 04, 1.0355e - 02, -6.9373e - 02, 2.6679e - 01, -6.4420e - 01,

1.0000e + 00, -9.7458e - 01, 5.4519e - 01, -1.3404e - 01],

with 7(0) =- 9.4174e - 01. We get

A4 = [4.3531e - 12, -1.3058e - 10, 1.8400e - 09, -1.6166e - 08, 9.9118e - 08,

- 4.4970e - 07, 1.5618e - 06, -4.2352e - 06, 9.0628e - 06, -1.5355e - 05,

2.0530e - 05, -2.1433e - 05, 1.7129e - 05, -1.0130e - 05, 4.1814e - 06,

- 1.0762e - 06, 1.3014e - 07].

Clearly, A4 (0) = 1.3014e - 07 > 0.

STEP V. Condition IV of Theorem 5.4:

By applying an explicit root location procedure, one can show that

A4 (y) 5 0, Vy E [0,2].

Thus, we conclude that F(cl, c2) is stable.



7. Conclusion and Final Remarks

In this paper, we have developed an efficient stability checking algorithm applicable for 2-

D 6-system characteristic polynomials. Our purpose here is to obtain a direct algorithm

due to the possible numerical disadvantages associated with indirect methods that utilize

transformation techniques.

In arriving at the algorithm, the following contributions have been made: (a) Tab-

ular method of stability checking applicable for 6-system polynomials possibly possessing

complex-valued coefficients, (b) quantities that may be regarded as the Schur-Cohn minors

applicable for such systems, and (c) polynomial arrays for computing both table entries

and Schur-Cohn minors.

The proposed Schur-Cohn minors lets one use a Siljak-like simplification [16] in the

stability check. Although the algorithm utilizes only the real-6-BT, results regarding the

Schur-Cohn minors are in fact valid for the more general complex-valued coefficient case

as well.

As in [10], it is possible to develop the algorithm such that only the numerator poly-

nomials of the entries of the real-6-BT and the Schur-Cohn minors are computed. Then,

we do not require polynomial division operations. However, our experience has been that

such a scheme is prone to be numerically unreliable. This is mainly due to the explosion

of polynomial degree especially in computing the Schur-Cohn minors. To avoid these dif-

ficulties and enhance numerical reliability, we have (a) introduced a scaling scheme, and

(b) used polynomial division to contain the polynomial degree. The latter is not new; in

fact, MJT also uses this. If the user is interested in implementing the algorithm using

PRO-MATLAB [28], these polynomial division operations may be conveniently performed

using the routine deconv.

We believe that a suitable scaling strategy can improve the numerical reliability of

the MJT as well. The authors arc currently looking into this.

The algorithm developed is easily implementable on a computer. The authors have
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implemented it via a C-language routine that the interested reader may request from the

second author.
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Appendix. Algorithm to obtain G(x). 1 (C2 )2 ., from F(c)., (C2 )- 2

Given
n2 nl

F ~ ~f(c,)n(C)n I).CI where fe(CI) = k' jf,. Ck c1 E T6, (a1
f=0 k=O

we now develop an algorithm that yields
2n2

G(X)n1 (C2)2 n2  E ~gi(x) F4 ln =C)2-FZIn C)2 ci E Ts. (a.2)
j=0

First, we see
n2 n2

G(x)(c2) = :1 Z ff(ciofi(i)c- 4+
1=0 j=0

n2 nl2+1 2n2 (a.3)

- Z ZfI(CI)fj-f(Zi) C12~ fI(Ci fj-t(Z0 ) 42
1=0 i=1 j=0 1=0

(quantities with negative subscripts are taken to be zero). Hence, comparing (a.2-3), we

get
j fni nlu

g,(x) = Ljft(ci)fj....(z) =: EV V'.,fk ~ d c I
t=0 1=0 [k=0:i=0

ij ninj

I I (.4

E fktk~~ _ (C1.Z1)k + X
t=0 k=0

where
j n1  k n

X~~~~~~~ L 4ktjtCe + E f

t=0 k-a i=O k
i~k

-' nj k n1  k

L ikfk,tf,,,_t Cke + fkek~-
t=0 k=0 i=0 = =

jni k j
~3~~c1 )'( fk,tf,,j~tC-e . ),ek 4 I

k=0 u=0 1=



Stability Determination of Two-Dimensional 6-Systems

Let us use the notation
)=c~', + 01

c"- 2 ci E T 6 , n =0 ,1, (a.6)

Noting that, for cl E T,
= C , (a.7)

1 + Trc

it is easy to shov that

,= -I) (a.8)

Substituting ii (a.5), we get

njk-I _2 9 .

X ZZ 2fk.ofi.. c- .lc (a.9)

Substituting in (a.4), we get

, n(-2 k () .I -21jgj(x) "- 1: E f,tfk~j-t "cI +1 E2fk, fij- (".I10)
t---= --O i---O

Now, in order to develop the algorithm, we need a recursive procedure to com-
(it)pute c1 , n = 0, 1. To proceed, we note that

.)=C (c, + j,)(c 1-l + c,) )- ,cI(cn-2 + •n-2)
(l 2 (111I

2c(I) c"n-1) + 1c (-2 n 2,3,.

Let
n

cn Y- cn'i (a. 12)
i=0

where
(1 _x (a. 13)

Remark. Note that

Ic 1. (a.14)

Substituting (a.12) in (a.11), and equating similar coefficients, we get

Ft / (n-1) 1 (rt-2)'
(,,) 2 •ci, , + C1,, , iz 0,...,n, n = 2,3,.... (a. 15)

ClIl=
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For instance, c1 , n = 0,..... ,5, may be conveniently obtained from

(0)-

C1 , 0 1 x
C(2) 0 2/r 2 X2

c4"I 0 0 6/T 4 X3
(4)] 0 0 4/r 2  16/-r 8 x"
(5)] ..0 0 0 20/,2 40/7 16J .x.
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